Key Insights
The European bioplastics market, valued at approximately €X million in 2025 (estimated based on provided CAGR and market size), is experiencing robust growth, projected to reach €Y million by 2033, exhibiting a Compound Annual Growth Rate (CAGR) of 14.08%. This expansion is driven by increasing environmental concerns, stringent regulations on conventional plastics, and the rising demand for sustainable packaging solutions across various sectors. The key application segments driving this growth include flexible and rigid packaging, where bioplastics offer a compelling alternative to traditional petroleum-based materials. The automotive and assembly operations sector is also adopting bioplastics for lightweight components and reduced carbon footprint. Furthermore, the agricultural and horticultural sectors are utilizing bioplastics for mulch films and other applications, benefiting from biodegradability and reduced environmental impact. Growth within Europe is further fueled by government initiatives promoting bio-based materials and increasing consumer awareness of sustainable products. Germany, France, Italy, and the United Kingdom represent significant market segments within Europe, contributing to the overall market expansion. However, challenges such as high production costs compared to conventional plastics and the need for improved biodegradability infrastructure in certain regions continue to pose restraints. The market is segmented by product type (bio-based biodegradables, bio-based non-biodegradables, and other bio-based materials) and application, allowing for targeted market penetration strategies by key players such as Arkema, Futerro, Solvay, and others. The competitive landscape is characterized by innovation in bioplastic materials, focusing on improved performance and cost-effectiveness.
The continued growth of the European bioplastics market depends heavily on overcoming the cost barrier and further advancements in material properties. Increased investment in research and development, along with government incentives, are crucial for expanding production capacity and improving the overall efficiency and sustainability of bioplastic production. The emergence of new bio-based feedstocks and advancements in biopolymer synthesis techniques are essential for achieving broader market adoption. Further expansion into new applications, including textiles and electronics, will play a key role in propelling market growth in the coming years. The focus on circular economy initiatives and developing efficient end-of-life management systems for bioplastics will be vital for long-term market sustainability and consumer confidence.
European Bioplastics Industry: A Comprehensive Market Report (2019-2033)
This in-depth report provides a comprehensive analysis of the European bioplastics industry, offering invaluable insights for industry professionals, investors, and strategic decision-makers. Covering the period from 2019 to 2033, with a focus on 2025, this report dissects market dynamics, innovation trends, and future growth potential. The study includes detailed segmentation by product type (Bio-based Biodegradables, Bio-based Non-biodegradables, Other Bio-based Biodegradables) and application (Flexible Packaging, Rigid Packaging, Automotive and Assembly Operations, Agriculture and Horticulture, Construction, Textiles, Electrical and Electronics, Other Applications), delivering actionable intelligence to navigate this rapidly evolving market.

European Bioplastics Industry Market Structure & Innovation Trends
This section analyzes the competitive landscape of the European bioplastics market, examining market concentration, innovation drivers, regulatory frameworks, and significant M&A activities from 2019-2024. The report assesses the market share held by key players such as Arkema, Futerro, Solvay, Kaneka Corporation, Braskem, Mitsubishi Chemical Corporation, Maccaferri Industrial Group, Corbion, BASF SE, Toray International Inc, Trinseo, Dow, Novamont SpA, Natureworks LLC, and Danimer Scientific. We delve into the impact of regulatory changes on market dynamics and explore the influence of substitute products and end-user demographics. The report also quantifies M&A deal values and their impact on market consolidation, providing a detailed picture of the industry's structure and evolution. We project a xx Million market value for the European Bioplastics market in 2025, driven by a xx% CAGR during the historical period.

European Bioplastics Industry Market Dynamics & Trends
This section provides a detailed analysis of the market's growth trajectory, examining key drivers such as increasing environmental concerns, stringent regulations promoting sustainable materials, and growing consumer demand for eco-friendly products. The report explores technological disruptions impacting production methods and material properties, alongside evolving consumer preferences influencing product demand. A detailed competitive analysis assesses the strategies employed by major players, shedding light on market penetration rates and CAGR projections for various segments from 2025-2033. We project a xx Million market value for 2033.

Dominant Regions & Segments in European Bioplastics Industry
This section identifies the leading regions and segments within the European bioplastics market. The analysis will pinpoint the dominant application and product type segments, exploring factors contributing to their market leadership.
- Leading Regions: [Insert analysis of dominant regions within Europe, e.g., Germany, France, etc., and the reasons for their dominance, e.g., strong regulatory support, established manufacturing infrastructure.]
- Leading Product Types: [Detailed analysis explaining the dominance of specific product types, e.g., Bio-based Biodegradables driven by specific applications and regulations]
- Leading Applications: [Detailed analysis explaining the dominance of specific application segments, e.g., Flexible Packaging due to high demand, and the reasons behind this dominance.]
- Key drivers will be examined using bullet points, such as economic policies favoring bioplastics, government subsidies, or existing infrastructure conducive to bioplastic manufacturing and processing. A detailed paragraph will be dedicated to a comprehensive analysis of each dominant segment’s current and projected market share, identifying factors influencing its growth trajectory.
European Bioplastics Industry Product Innovations
This section summarizes recent advancements in bioplastics technology, focusing on innovative product development, novel applications, and their competitive advantages. The analysis highlights key technological trends, such as improved biodegradability, enhanced material properties (e.g., strength, flexibility), and cost-effectiveness, assessing their market fit and potential impact on market growth. New innovations in PLA and PHA based materials will be highlighted along with their applications in food packaging and other sectors.
Report Scope & Segmentation Analysis
This report comprehensively segments the European bioplastics market based on product type and application.
- Product Type: Bio-based Biodegradables, Bio-based Non-biodegradables, Other Bio-based Biodegradables. [Each product type will have a paragraph detailing its market size (in Millions), growth projections (CAGR) for the forecast period (2025-2033), and competitive dynamics.]
- Application: Flexible Packaging, Rigid Packaging, Automotive and Assembly Operations, Agriculture and Horticulture, Construction, Textiles, Electrical and Electronics, Other Applications. [Each application segment will have a paragraph detailing its market size (in Millions), growth projections (CAGR) for the forecast period (2025-2033), and competitive dynamics.]
Key Drivers of European Bioplastics Industry Growth
The European bioplastics industry's growth is propelled by several key factors: increasing environmental awareness leading to stricter regulations on conventional plastics, rising consumer demand for sustainable products, technological advancements improving bioplastic properties and reducing production costs, and supportive government policies and incentives promoting bio-based materials. Specific examples will be included.
Challenges in the European Bioplastics Industry Sector
The European bioplastics industry faces challenges such as relatively higher production costs compared to conventional plastics, complexities in the bioplastic supply chain (e.g., raw material sourcing, processing), and inconsistencies in bioplastic standardization and certifications, hindering widespread adoption. These challenges will be quantified using market share data and their projected impact on the market.
Emerging Opportunities in European Bioplastics Industry
Significant opportunities exist in the expansion of bioplastic applications into new sectors (e.g., medical, electronics), development of innovative bioplastic formulations with enhanced performance, and exploration of new bio-based feedstocks for sustainable production. The increasing focus on circular economy principles and bio-recycling technologies opens further avenues for growth.
Leading Players in the European Bioplastics Industry Market
- Arkema
- Futerro
- Solvay
- Kaneka Corporation
- Braskem
- Mitsubishi Chemical Corporation
- Maccaferri Industrial Group
- Corbion
- BASF SE
- Toray International Inc
- Trinseo
- Dow
- Novamont SpA
- Natureworks LLC
- Danimer Scientific
Key Developments in European Bioplastics Industry Industry
- February 2022: Carbios and Indorama Ventures announced a partnership for bio-recycled PET in France, with a processing capacity of 50,000 tons. This partnership significantly boosts the bio-recycling capacity in Europe and is expected to increase the availability of recycled PET for various applications.
Future Outlook for European Bioplastics Industry Market
The future of the European bioplastics market appears promising, driven by continued technological advancements, supportive regulatory frameworks, and a growing consumer preference for sustainable products. The market is poised for significant growth, with further expansion into new applications and increased adoption across various sectors. The rising demand for sustainable packaging solutions and increasing awareness of the environmental impact of conventional plastics will be key growth accelerators.
European Bioplastics Industry Segmentation
-
1. Product Type
-
1.1. Bio-based Biodegradables
- 1.1.1. Starch-based
- 1.1.2. Polylactic Acid (PLA)
- 1.1.3. Polyhydroxyalkanoates (PHA)
- 1.1.4. Polyester (PBS, PBAT, and PCL)
- 1.1.5. Other Bio-based Biodegradables
-
1.2. Bio-based Non-biodegradables
- 1.2.1. Bio-polyethylene Terephthalate
- 1.2.2. Bio-polyamides
- 1.2.3. Bio-polytrimethylene Terephthalate
- 1.2.4. Other Bio-based Non-biodegradables
-
1.1. Bio-based Biodegradables
-
2. Application
- 2.1. Flexible Packaging
- 2.2. Rigid Packaging
- 2.3. Automotive and Assembly Operations
- 2.4. Agriculture and Horticulture
- 2.5. Construction
- 2.6. Textiles
- 2.7. Electrical and Electronics
- 2.8. Other Applications
European Bioplastics Industry Segmentation By Geography
- 1. Germany
- 2. United Kingdom
- 3. Italy
- 4. France
- 5. Spain
- 6. Russia
- 7. Nordic Countries
- 8. Rest of Europe

European Bioplastics Industry REPORT HIGHLIGHTS
Aspects | Details |
---|---|
Study Period | 2019-2033 |
Base Year | 2024 |
Estimated Year | 2025 |
Forecast Period | 2025-2033 |
Historical Period | 2019-2024 |
Growth Rate | CAGR of 14.08% from 2019-2033 |
Segmentation |
|
Table of Contents
- 1. Introduction
- 1.1. Research Scope
- 1.2. Market Segmentation
- 1.3. Research Methodology
- 1.4. Definitions and Assumptions
- 2. Executive Summary
- 2.1. Introduction
- 3. Market Dynamics
- 3.1. Introduction
- 3.2. Market Drivers
- 3.2.1. Environmental Factors Encouraging a Paradigm Shift; Growing Demand for Bioplastics in Flexible Packaging; Other Drivers
- 3.3. Market Restrains
- 3.3.1. Availability of Cheaper Alternatives; Other Restraints
- 3.4. Market Trends
- 3.4.1. Flexible Packaging Expected to Dominate the Market
- 4. Market Factor Analysis
- 4.1. Porters Five Forces
- 4.2. Supply/Value Chain
- 4.3. PESTEL analysis
- 4.4. Market Entropy
- 4.5. Patent/Trademark Analysis
- 5. European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 5.1. Market Analysis, Insights and Forecast - by Product Type
- 5.1.1. Bio-based Biodegradables
- 5.1.1.1. Starch-based
- 5.1.1.2. Polylactic Acid (PLA)
- 5.1.1.3. Polyhydroxyalkanoates (PHA)
- 5.1.1.4. Polyester (PBS, PBAT, and PCL)
- 5.1.1.5. Other Bio-based Biodegradables
- 5.1.2. Bio-based Non-biodegradables
- 5.1.2.1. Bio-polyethylene Terephthalate
- 5.1.2.2. Bio-polyamides
- 5.1.2.3. Bio-polytrimethylene Terephthalate
- 5.1.2.4. Other Bio-based Non-biodegradables
- 5.1.1. Bio-based Biodegradables
- 5.2. Market Analysis, Insights and Forecast - by Application
- 5.2.1. Flexible Packaging
- 5.2.2. Rigid Packaging
- 5.2.3. Automotive and Assembly Operations
- 5.2.4. Agriculture and Horticulture
- 5.2.5. Construction
- 5.2.6. Textiles
- 5.2.7. Electrical and Electronics
- 5.2.8. Other Applications
- 5.3. Market Analysis, Insights and Forecast - by Region
- 5.3.1. Germany
- 5.3.2. United Kingdom
- 5.3.3. Italy
- 5.3.4. France
- 5.3.5. Spain
- 5.3.6. Russia
- 5.3.7. Nordic Countries
- 5.3.8. Rest of Europe
- 5.1. Market Analysis, Insights and Forecast - by Product Type
- 6. Germany European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 6.1. Market Analysis, Insights and Forecast - by Product Type
- 6.1.1. Bio-based Biodegradables
- 6.1.1.1. Starch-based
- 6.1.1.2. Polylactic Acid (PLA)
- 6.1.1.3. Polyhydroxyalkanoates (PHA)
- 6.1.1.4. Polyester (PBS, PBAT, and PCL)
- 6.1.1.5. Other Bio-based Biodegradables
- 6.1.2. Bio-based Non-biodegradables
- 6.1.2.1. Bio-polyethylene Terephthalate
- 6.1.2.2. Bio-polyamides
- 6.1.2.3. Bio-polytrimethylene Terephthalate
- 6.1.2.4. Other Bio-based Non-biodegradables
- 6.1.1. Bio-based Biodegradables
- 6.2. Market Analysis, Insights and Forecast - by Application
- 6.2.1. Flexible Packaging
- 6.2.2. Rigid Packaging
- 6.2.3. Automotive and Assembly Operations
- 6.2.4. Agriculture and Horticulture
- 6.2.5. Construction
- 6.2.6. Textiles
- 6.2.7. Electrical and Electronics
- 6.2.8. Other Applications
- 6.1. Market Analysis, Insights and Forecast - by Product Type
- 7. United Kingdom European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 7.1. Market Analysis, Insights and Forecast - by Product Type
- 7.1.1. Bio-based Biodegradables
- 7.1.1.1. Starch-based
- 7.1.1.2. Polylactic Acid (PLA)
- 7.1.1.3. Polyhydroxyalkanoates (PHA)
- 7.1.1.4. Polyester (PBS, PBAT, and PCL)
- 7.1.1.5. Other Bio-based Biodegradables
- 7.1.2. Bio-based Non-biodegradables
- 7.1.2.1. Bio-polyethylene Terephthalate
- 7.1.2.2. Bio-polyamides
- 7.1.2.3. Bio-polytrimethylene Terephthalate
- 7.1.2.4. Other Bio-based Non-biodegradables
- 7.1.1. Bio-based Biodegradables
- 7.2. Market Analysis, Insights and Forecast - by Application
- 7.2.1. Flexible Packaging
- 7.2.2. Rigid Packaging
- 7.2.3. Automotive and Assembly Operations
- 7.2.4. Agriculture and Horticulture
- 7.2.5. Construction
- 7.2.6. Textiles
- 7.2.7. Electrical and Electronics
- 7.2.8. Other Applications
- 7.1. Market Analysis, Insights and Forecast - by Product Type
- 8. Italy European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 8.1. Market Analysis, Insights and Forecast - by Product Type
- 8.1.1. Bio-based Biodegradables
- 8.1.1.1. Starch-based
- 8.1.1.2. Polylactic Acid (PLA)
- 8.1.1.3. Polyhydroxyalkanoates (PHA)
- 8.1.1.4. Polyester (PBS, PBAT, and PCL)
- 8.1.1.5. Other Bio-based Biodegradables
- 8.1.2. Bio-based Non-biodegradables
- 8.1.2.1. Bio-polyethylene Terephthalate
- 8.1.2.2. Bio-polyamides
- 8.1.2.3. Bio-polytrimethylene Terephthalate
- 8.1.2.4. Other Bio-based Non-biodegradables
- 8.1.1. Bio-based Biodegradables
- 8.2. Market Analysis, Insights and Forecast - by Application
- 8.2.1. Flexible Packaging
- 8.2.2. Rigid Packaging
- 8.2.3. Automotive and Assembly Operations
- 8.2.4. Agriculture and Horticulture
- 8.2.5. Construction
- 8.2.6. Textiles
- 8.2.7. Electrical and Electronics
- 8.2.8. Other Applications
- 8.1. Market Analysis, Insights and Forecast - by Product Type
- 9. France European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 9.1. Market Analysis, Insights and Forecast - by Product Type
- 9.1.1. Bio-based Biodegradables
- 9.1.1.1. Starch-based
- 9.1.1.2. Polylactic Acid (PLA)
- 9.1.1.3. Polyhydroxyalkanoates (PHA)
- 9.1.1.4. Polyester (PBS, PBAT, and PCL)
- 9.1.1.5. Other Bio-based Biodegradables
- 9.1.2. Bio-based Non-biodegradables
- 9.1.2.1. Bio-polyethylene Terephthalate
- 9.1.2.2. Bio-polyamides
- 9.1.2.3. Bio-polytrimethylene Terephthalate
- 9.1.2.4. Other Bio-based Non-biodegradables
- 9.1.1. Bio-based Biodegradables
- 9.2. Market Analysis, Insights and Forecast - by Application
- 9.2.1. Flexible Packaging
- 9.2.2. Rigid Packaging
- 9.2.3. Automotive and Assembly Operations
- 9.2.4. Agriculture and Horticulture
- 9.2.5. Construction
- 9.2.6. Textiles
- 9.2.7. Electrical and Electronics
- 9.2.8. Other Applications
- 9.1. Market Analysis, Insights and Forecast - by Product Type
- 10. Spain European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 10.1. Market Analysis, Insights and Forecast - by Product Type
- 10.1.1. Bio-based Biodegradables
- 10.1.1.1. Starch-based
- 10.1.1.2. Polylactic Acid (PLA)
- 10.1.1.3. Polyhydroxyalkanoates (PHA)
- 10.1.1.4. Polyester (PBS, PBAT, and PCL)
- 10.1.1.5. Other Bio-based Biodegradables
- 10.1.2. Bio-based Non-biodegradables
- 10.1.2.1. Bio-polyethylene Terephthalate
- 10.1.2.2. Bio-polyamides
- 10.1.2.3. Bio-polytrimethylene Terephthalate
- 10.1.2.4. Other Bio-based Non-biodegradables
- 10.1.1. Bio-based Biodegradables
- 10.2. Market Analysis, Insights and Forecast - by Application
- 10.2.1. Flexible Packaging
- 10.2.2. Rigid Packaging
- 10.2.3. Automotive and Assembly Operations
- 10.2.4. Agriculture and Horticulture
- 10.2.5. Construction
- 10.2.6. Textiles
- 10.2.7. Electrical and Electronics
- 10.2.8. Other Applications
- 10.1. Market Analysis, Insights and Forecast - by Product Type
- 11. Russia European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 11.1. Market Analysis, Insights and Forecast - by Product Type
- 11.1.1. Bio-based Biodegradables
- 11.1.1.1. Starch-based
- 11.1.1.2. Polylactic Acid (PLA)
- 11.1.1.3. Polyhydroxyalkanoates (PHA)
- 11.1.1.4. Polyester (PBS, PBAT, and PCL)
- 11.1.1.5. Other Bio-based Biodegradables
- 11.1.2. Bio-based Non-biodegradables
- 11.1.2.1. Bio-polyethylene Terephthalate
- 11.1.2.2. Bio-polyamides
- 11.1.2.3. Bio-polytrimethylene Terephthalate
- 11.1.2.4. Other Bio-based Non-biodegradables
- 11.1.1. Bio-based Biodegradables
- 11.2. Market Analysis, Insights and Forecast - by Application
- 11.2.1. Flexible Packaging
- 11.2.2. Rigid Packaging
- 11.2.3. Automotive and Assembly Operations
- 11.2.4. Agriculture and Horticulture
- 11.2.5. Construction
- 11.2.6. Textiles
- 11.2.7. Electrical and Electronics
- 11.2.8. Other Applications
- 11.1. Market Analysis, Insights and Forecast - by Product Type
- 12. Nordic Countries European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 12.1. Market Analysis, Insights and Forecast - by Product Type
- 12.1.1. Bio-based Biodegradables
- 12.1.1.1. Starch-based
- 12.1.1.2. Polylactic Acid (PLA)
- 12.1.1.3. Polyhydroxyalkanoates (PHA)
- 12.1.1.4. Polyester (PBS, PBAT, and PCL)
- 12.1.1.5. Other Bio-based Biodegradables
- 12.1.2. Bio-based Non-biodegradables
- 12.1.2.1. Bio-polyethylene Terephthalate
- 12.1.2.2. Bio-polyamides
- 12.1.2.3. Bio-polytrimethylene Terephthalate
- 12.1.2.4. Other Bio-based Non-biodegradables
- 12.1.1. Bio-based Biodegradables
- 12.2. Market Analysis, Insights and Forecast - by Application
- 12.2.1. Flexible Packaging
- 12.2.2. Rigid Packaging
- 12.2.3. Automotive and Assembly Operations
- 12.2.4. Agriculture and Horticulture
- 12.2.5. Construction
- 12.2.6. Textiles
- 12.2.7. Electrical and Electronics
- 12.2.8. Other Applications
- 12.1. Market Analysis, Insights and Forecast - by Product Type
- 13. Rest of Europe European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 13.1. Market Analysis, Insights and Forecast - by Product Type
- 13.1.1. Bio-based Biodegradables
- 13.1.1.1. Starch-based
- 13.1.1.2. Polylactic Acid (PLA)
- 13.1.1.3. Polyhydroxyalkanoates (PHA)
- 13.1.1.4. Polyester (PBS, PBAT, and PCL)
- 13.1.1.5. Other Bio-based Biodegradables
- 13.1.2. Bio-based Non-biodegradables
- 13.1.2.1. Bio-polyethylene Terephthalate
- 13.1.2.2. Bio-polyamides
- 13.1.2.3. Bio-polytrimethylene Terephthalate
- 13.1.2.4. Other Bio-based Non-biodegradables
- 13.1.1. Bio-based Biodegradables
- 13.2. Market Analysis, Insights and Forecast - by Application
- 13.2.1. Flexible Packaging
- 13.2.2. Rigid Packaging
- 13.2.3. Automotive and Assembly Operations
- 13.2.4. Agriculture and Horticulture
- 13.2.5. Construction
- 13.2.6. Textiles
- 13.2.7. Electrical and Electronics
- 13.2.8. Other Applications
- 13.1. Market Analysis, Insights and Forecast - by Product Type
- 14. Germany European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 15. France European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 16. Italy European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 17. United Kingdom European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 18. Spain European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 19. Rest of Europe European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 20. Competitive Analysis
- 20.1. Market Share Analysis 2024
- 20.2. Company Profiles
- 20.2.1 Arkema
- 20.2.1.1. Overview
- 20.2.1.2. Products
- 20.2.1.3. SWOT Analysis
- 20.2.1.4. Recent Developments
- 20.2.1.5. Financials (Based on Availability)
- 20.2.2 Futerro
- 20.2.2.1. Overview
- 20.2.2.2. Products
- 20.2.2.3. SWOT Analysis
- 20.2.2.4. Recent Developments
- 20.2.2.5. Financials (Based on Availability)
- 20.2.3 Solvay
- 20.2.3.1. Overview
- 20.2.3.2. Products
- 20.2.3.3. SWOT Analysis
- 20.2.3.4. Recent Developments
- 20.2.3.5. Financials (Based on Availability)
- 20.2.4 Kaneka Corporation
- 20.2.4.1. Overview
- 20.2.4.2. Products
- 20.2.4.3. SWOT Analysis
- 20.2.4.4. Recent Developments
- 20.2.4.5. Financials (Based on Availability)
- 20.2.5 Braskem
- 20.2.5.1. Overview
- 20.2.5.2. Products
- 20.2.5.3. SWOT Analysis
- 20.2.5.4. Recent Developments
- 20.2.5.5. Financials (Based on Availability)
- 20.2.6 Mitsubishi Chemical Corporation
- 20.2.6.1. Overview
- 20.2.6.2. Products
- 20.2.6.3. SWOT Analysis
- 20.2.6.4. Recent Developments
- 20.2.6.5. Financials (Based on Availability)
- 20.2.7 Maccaferri Industrial Group
- 20.2.7.1. Overview
- 20.2.7.2. Products
- 20.2.7.3. SWOT Analysis
- 20.2.7.4. Recent Developments
- 20.2.7.5. Financials (Based on Availability)
- 20.2.8 Corbion
- 20.2.8.1. Overview
- 20.2.8.2. Products
- 20.2.8.3. SWOT Analysis
- 20.2.8.4. Recent Developments
- 20.2.8.5. Financials (Based on Availability)
- 20.2.9 BASF SE
- 20.2.9.1. Overview
- 20.2.9.2. Products
- 20.2.9.3. SWOT Analysis
- 20.2.9.4. Recent Developments
- 20.2.9.5. Financials (Based on Availability)
- 20.2.10 Toray International Inc
- 20.2.10.1. Overview
- 20.2.10.2. Products
- 20.2.10.3. SWOT Analysis
- 20.2.10.4. Recent Developments
- 20.2.10.5. Financials (Based on Availability)
- 20.2.11 Trinseo
- 20.2.11.1. Overview
- 20.2.11.2. Products
- 20.2.11.3. SWOT Analysis
- 20.2.11.4. Recent Developments
- 20.2.11.5. Financials (Based on Availability)
- 20.2.12 Dow
- 20.2.12.1. Overview
- 20.2.12.2. Products
- 20.2.12.3. SWOT Analysis
- 20.2.12.4. Recent Developments
- 20.2.12.5. Financials (Based on Availability)
- 20.2.13 Novamont SpA
- 20.2.13.1. Overview
- 20.2.13.2. Products
- 20.2.13.3. SWOT Analysis
- 20.2.13.4. Recent Developments
- 20.2.13.5. Financials (Based on Availability)
- 20.2.14 Natureworks LLC
- 20.2.14.1. Overview
- 20.2.14.2. Products
- 20.2.14.3. SWOT Analysis
- 20.2.14.4. Recent Developments
- 20.2.14.5. Financials (Based on Availability)
- 20.2.15 Danimer Scientific
- 20.2.15.1. Overview
- 20.2.15.2. Products
- 20.2.15.3. SWOT Analysis
- 20.2.15.4. Recent Developments
- 20.2.15.5. Financials (Based on Availability)
- 20.2.1 Arkema
List of Figures
- Figure 1: European Bioplastics Industry Revenue Breakdown (Million, %) by Product 2024 & 2032
- Figure 2: European Bioplastics Industry Share (%) by Company 2024
List of Tables
- Table 1: European Bioplastics Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 2: European Bioplastics Industry Volume K Tons Forecast, by Region 2019 & 2032
- Table 3: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 4: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 5: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 6: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 7: European Bioplastics Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 8: European Bioplastics Industry Volume K Tons Forecast, by Region 2019 & 2032
- Table 9: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 10: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 11: Germany European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 12: Germany European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 13: France European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 14: France European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 15: Italy European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 16: Italy European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 17: United Kingdom European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 18: United Kingdom European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 19: Spain European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 20: Spain European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 21: Rest of Europe European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 22: Rest of Europe European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 23: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 24: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 25: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 26: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 27: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 28: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 29: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 30: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 31: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 32: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 33: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 34: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 35: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 36: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 37: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 38: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 39: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 40: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 41: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 42: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 43: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 44: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 45: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 46: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 47: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 48: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 49: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 50: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 51: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 52: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 53: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 54: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 55: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 56: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 57: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 58: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 59: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 60: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 61: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 62: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 63: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 64: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 65: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 66: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 67: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 68: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 69: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 70: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
Frequently Asked Questions
1. What is the projected Compound Annual Growth Rate (CAGR) of the European Bioplastics Industry?
The projected CAGR is approximately 14.08%.
2. Which companies are prominent players in the European Bioplastics Industry?
Key companies in the market include Arkema, Futerro, Solvay, Kaneka Corporation, Braskem, Mitsubishi Chemical Corporation, Maccaferri Industrial Group, Corbion, BASF SE, Toray International Inc, Trinseo, Dow, Novamont SpA, Natureworks LLC, Danimer Scientific.
3. What are the main segments of the European Bioplastics Industry?
The market segments include Product Type, Application.
4. Can you provide details about the market size?
The market size is estimated to be USD XX Million as of 2022.
5. What are some drivers contributing to market growth?
Environmental Factors Encouraging a Paradigm Shift; Growing Demand for Bioplastics in Flexible Packaging; Other Drivers.
6. What are the notable trends driving market growth?
Flexible Packaging Expected to Dominate the Market.
7. Are there any restraints impacting market growth?
Availability of Cheaper Alternatives; Other Restraints.
8. Can you provide examples of recent developments in the market?
February 2022: Carbios and Indorama Ventures announced their partnership for bio-recycled PET in France with a processing capacity estimated at 50,000 tons.
9. What pricing options are available for accessing the report?
Pricing options include single-user, multi-user, and enterprise licenses priced at USD 4750, USD 5250, and USD 8750 respectively.
10. Is the market size provided in terms of value or volume?
The market size is provided in terms of value, measured in Million and volume, measured in K Tons.
11. Are there any specific market keywords associated with the report?
Yes, the market keyword associated with the report is "European Bioplastics Industry," which aids in identifying and referencing the specific market segment covered.
12. How do I determine which pricing option suits my needs best?
The pricing options vary based on user requirements and access needs. Individual users may opt for single-user licenses, while businesses requiring broader access may choose multi-user or enterprise licenses for cost-effective access to the report.
13. Are there any additional resources or data provided in the European Bioplastics Industry report?
While the report offers comprehensive insights, it's advisable to review the specific contents or supplementary materials provided to ascertain if additional resources or data are available.
14. How can I stay updated on further developments or reports in the European Bioplastics Industry?
To stay informed about further developments, trends, and reports in the European Bioplastics Industry, consider subscribing to industry newsletters, following relevant companies and organizations, or regularly checking reputable industry news sources and publications.
Methodology
Step 1 - Identification of Relevant Samples Size from Population Database



Step 2 - Approaches for Defining Global Market Size (Value, Volume* & Price*)

Note*: In applicable scenarios
Step 3 - Data Sources
Primary Research
- Web Analytics
- Survey Reports
- Research Institute
- Latest Research Reports
- Opinion Leaders
Secondary Research
- Annual Reports
- White Paper
- Latest Press Release
- Industry Association
- Paid Database
- Investor Presentations

Step 4 - Data Triangulation
Involves using different sources of information in order to increase the validity of a study
These sources are likely to be stakeholders in a program - participants, other researchers, program staff, other community members, and so on.
Then we put all data in single framework & apply various statistical tools to find out the dynamic on the market.
During the analysis stage, feedback from the stakeholder groups would be compared to determine areas of agreement as well as areas of divergence